
International Journal of Theoretical Physics, Vol. 34, No. 8, 1995 

Constitution of Objects in Classical Mechanics and 
in Quantum Mechanics 

Peter Mittelstaedt ] 

Received October 6, 1994 

The constitution of objects is discussed in classical mechanics and in quantum 
mechanics. The requirement of objectivity and the Galilei invariance of classical 
and quantum mechanics leads to the postulate of covariance which must be 
fulfilled by observable quantities. Objects are then considered as carriers of these 
covariant observables and turn out to be representations of the Galilei group. 
Individual systems can be defined in classical mechanics by their trajectories in 
phase space. However, in quantum mechanics the characterization of individuals 
can only be achieved approximately by means of unsharp observables. 

1. PHILOSOPHICAL P R E L I M I N A R I E S  

It is an often discussed question o f  traditional philosophy whether in 
addition to the observation of  qualities there exist some entities, things or 
objects, which possess the qualities mentioned as their properties. In his 
Treatise o f  Human Nature, David Hume emphasized that we never observe 
entities like objects, but only qualities, and that it is nothing but imagination 
if we consider the observed qualities as properties o f  an object. The same 
problem was treated by Kant (1787) in his Critique o f  Pure Reason. However,  
in contrast to Hume, Kant emphasized that "objects of  experience" are not 
only arbitrary imaginations, but entities which were constituted from the 
observed data by means of  some well-defined conceptual prescriptions, in 
particular the categories of  substance and causality. Kant formulated necessary 
conditions which must be fulfilled by the observed data if the perceived 
qualities are to be considered as properties of  an "object of  experience." 

The controversy between empiricism and realism was repeated in some 
sense within the positivism of  the 19th century. Ernst Mach (1926) argued 
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in a similar way as Hume and denied the existence of atoms since--at  this 
t ime--atoms could not directly be observed but only inferred from their 
effects on thermodynamic qualities. In the 20th century the positivistic 
approach was applied by Nils Bohr (1928) to quantum mechanics. However, 
Bohr used this "minimal interpretation" not only for philosophical reasons, 
but because the hypothetical assumption of objects as carriers of properties 
turned out to be no longer an admissible convention, but was incompatible 
with quantum theory. The last remark shows that the construction of objects 
as carriers of properties in physics provides at least the same problems as in 
traditional philosophy. For this reason Kant's (1787) transcendental arguments 
can be used as a guideline for constituting objects in classical mechanics and 
quantum mechanics (Mittelstaedt, 1994). 

2. OBJECTS IN CLASSICAL MECHANICS 

2.1. Objectivity and Invariance 

Let us consider an observer O who has performed some measurements 
making use of a measuring apparatus M. The measuring results may then be 
considered as the observations. Generally, the goal of physics is the cognition 
of external reality and not of the observing subject. For this reason observa- 
tions should refer to external reality and not only to the observer's subjective 
impressions. This postulate will be called the requirement of objectivity. Let 
us discuss first some conditions which must be fulfilled if given observations 
are to be considered as a description of an external entity in space and time. 

The cognition of an external reality should be independent, in some 
sense, of the subjective preconditions of the observer. Different observers O, 
O', O" or different measuring apparatus M, M' ,  M" should be able to observe 
the same object of external reality. The subjective, observer-dependent compo- 
nent in a measuring result is given by the system of coordinates in space and 
time which is used by the observer. Hence the requirement of objectivity can 
only be fulfilled for a class of observations if the fundamental laws of external 
reality possess some invariance structure. If an observer changes its space- 
time coordinate system from K to K' ,  then the observations should be changed 
such that they refer to the same, but equivalently changed object. In this way 
the intersubjectivity and objectivity of the measuring results can be established 
(Weyl, 1966). 

Let us assume that there is a class of space-time coordinate transforma- 
tions such that the fundamental laws of the domain of reality considered are 
invariant against these transformations. In classical mechanics this is the case 
for the group G10 of Galilei transformations, which depend on ten independent 
parameters {w, a, R, "r}. If the observer is "moved" in accordance with a 



Objects in Classical and Quantum Mechanics 1617 

Galilei transformation, e.g., translated in space, then the observations (measur- 
ing results) of an external physical object will transform "covariantly" with 
respect to this transformation. Since also the observers, represented by mea- 
suring instruments M, M' ,  . . . .  are physical objects, they will be subject to 
the same invariance laws. This implies an important symmetry between active 
and passive transformation: The transformation of the measuring results does 
not depend on whether (1) the observer is moved in accordance with a Galilei 
transformation T = T(G), G C G10, or whether (2) the object is moved 
according to the inverse transformation T -1. 

2.2. Covariance and Observables 

The symmetry between active and passive transformations allows for a 
clarification of the concept of an "observable." Intuitively, an observable 
may be understood as a measurable quantity or a property of an object system 
S which belongs to external reality and which is clearly distinguished from 
the measuring apparatus M. Properties correspond to yes-no  propositions Pi 
or to the most simple observables with values 0 and 1. The set {Pi} of 
elementary propositions can be extended by introducing the logical operations 
A, v, -~ and the relation ---. In this way one arrives at the propositional system 
P. In case of classical mechanics this propositional system P is a complete, 
orthomodular, distributive, and atomic lattice Lo 

One can then define the concept of an observable in a more general 
sense. Let B --- B(~t) be the Boolean, atomic lattice B = (A e B((~t); n ,  
u ,  -%} of Borel sets on the real line; then an observable is defined as an 
injective mapping ~: B ~ Lc where @ is a ~-homomorphism. In this way 
a Borel set A E B(~t) of the real numbers is mapped onto a proposition 
rb(A) ~ Lo The triple (@, B, Lc} is connected with the invariance group G10 
in a twofold way. First, the transformation group acts on the system, i.e., on 
its propositional lattice Lo In this way the properties of the system are 
changed by an active transformation T. Second the transformation group acts 
on the apparatus M, i.e., on its reading scale, which corresponds to the lattice 
B of Borel sets. In this case a passive transformation of the observer's 
coordinate system is induced, which changes the reading scale in accordance 
with the transformation T considered. 

Within this conceptual framework the symmetry between active and 
passive transformations leads to an important postulate which must be fulfilled 
by a measure @: B -+ Lc if �9 can be interpreted as an observable: For the 
transformation of S or Lo respectively, one needs representations S(G) of 
the subgroups G C Gl0 by automorphism of Lo For the transformation of 
M or B(~) ,  respectively, one needs representations M(G) of G by automor- 



1618 Mittelstaedt 

phisms of B. The symmetry between active and passive transformations then 
implies that (Piron, 1976, pp. 93ff) 

OP{M(G)[BJ} = Lc = S(G)[dp{B}] (Cc) 

where we write r for the mapping qb and S(G)['] or M(G)[.] for the 
application of G on S or M, respectively. The covariance postulate (Cc) is 
the abstract formulation of the invariance of classical mechanics with respect 
to the Galilei group of transformations. It determines the functions dp which 
may be considered as "observables" and it shows how these observables are 
transformed under a special transformation T(G). 

2.3. Carriers of Properties 

On the basis of the covariance postulate (Cc) and the Galilei group one 
can now define the fundamental observables p (momentum), q (position), 
and the observable t (time). 

The basis quantities {p, q, t} of the state space can be shown to be 
"observables" in the sense explained, which satisfy the covariance postulate 
(Cc). Within the framework of classical mechanics all other observables can 
be written as functions F(pk, qk, t) which depend on the coordinates Pk, qk, 
and t. If an object of classical mechanics is understood as a carrier of 
properties, then it is obviously sufficient to require that it is a carrier of the 
fundamental observables {p, q, t}. 

On the basis of these results and in the sense of the covariance postulate 
one can now define the concept of a classical object S in the following way: 

A classical object S is an algebra Lc such that a representation S(G) of 
the passive Galilei group Gqo is defined by the automorphism of Lc, which 
admits the observables p, q, t in the sense of the covariance postulate (Cc). 

This means that a classical object is a carrier of the properties P ~ Lc, 
but not only in one contingent situation CM which is given by an observer 
M and its system of coordinates, but also in all other situations CM' which 
evolve from CM by Galilei transformations. The classical object is a carrier 
of properties which persists under the transformations of the Galilei group. 
On the basis of this general concept of an object as carrier of properties one 
can further specify this concept by considering different classes. For example, 
elementary systems are given by irreducible representations S(G) of the 
Galilei group. For elementary systems which correspond to mass points 
without geometrical structure, there are no true but only projective representa- 
tions of the group G~0. These representations are characterized by one continu- 
ous parameter m which can be interpreted as the "mass" of the object. There 
are also other, even true representations of G~0 which characterize objects 
different from mass points without structure. Here we will not go into details. 
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2.4. Individual Systems 

The representations of the Galilei group characterize classes of objects 
with the same permanent properties. In order to denote an individual system 
one has to find additional properties which distinguish the system S in question 
from all the other systems S', S " , . . .  of the same class. Two questions arise 
at this point. First, one has to make clear whether the denotation (p, q, t) of 
S is unique, i.e., whether there is only one system with these properties. 
Second, if uniqueness is guaranteed, one has to find out in which way the 
system St defined at time t can be reidentified at some later time t' > t. 

In order to guarantee uniqueness of St one needs an additional dynamical 
principle which excludes that two systems are at the same time t at the same 
phase point (p, q). Clearly this postulate is fulfilled if impenetrability in 
position space is given. This is actually the case in all known situations. 
However, it does not follow from any dynamical principle. 

In order to guarantee also the reidentifiability of the system St uniquely 
defined at time t at some later time value t', one needs a convenient law 
which connects the point (p, q)t in phase space (at time t) with the phase 
point (p, q)t' (at any other time t'). In classical mechanics a dynamical law 
of this kind is given by a Hamiltonian H(p, q) and the canonical equations. 
This means that an individual system St can be reidentified at any other time 
value t' ~ t by the (p, q) values on its dynamical trajectory T(S) := {Pt, qt} 
in phase space. Both requirements for individual objects, the impenetrability 
in phase space and the existence of a Hamiltonian, are usually guaranteed 
in classical mechanics. For this reason an individual system S can be named 
permanently by an arbitrary point (Pt, qt) on its trajectory T(S). 

3. OBJECTS IN QUANTUM MECHANICS 

3.1. Objectivity 

The same way of reasoning which allows for the constitution of objects 
in classical mechanics can also be applied to quantum mechanics. In classical 
mechanics as well as in quantum mechanics we are interested in the cognition 
of external reality and not in the observing subject. This leads again to the 
requirement of objectivity. However, in contrast to classical mechanics, in 
quantum mechanics this postulate provides serious problems. The separation 
of the object system from the measuring apparatus after a measurement leads 
to the well-known restrictions of quantum mechanics. Nonobjectivity and 
the lack of a strict predictability of some properties are the most important 
consequences of the requirement of objectivity. 

If these consequences are accepted, the requirement of objectivity means, 
again, that the fundamental laws of physics are subject to a group of symmetry 
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transformations. Different observers connected by transformations of the 
invariance group will then be able to describe the same object of external 
reality. The invariance group is again given by the ten-parameter Galilei 
group Gi0. The observer corresponds to a macroscopic and classical measuring 
apparatus M, which is associated with a space-time coordinate system. For 
this reason a passive Galilei transformation has a meaning which is quite 
similar to the classical case. Different observers represented by measuring 
apparatus M, M', . . .  are connected by transformations of the Galilei group 
and the measuring results R M ,  R M , ,  �9 �9 �9 will then transform "covariantly" with 
respect to these transformations. 

In spite of these similarities, the equivalence of active and passive 
transformations is not obvious here in the same sense as in classical mechanics. 
First, it is not quite clear what is meant by an active transformation correspond- 
ing to a translation, rotation, etc., of an object. Generally, quantum systems are 
not localized and their motion cannot be described by space-time trajectories. 
Second, in classical physics the equivalence of active and passive transforma- 
tions is based on the fact that object-systems and measuring apparatus are 
subject to the same physical laws. However, in quantum mechanics objects 
are treated as quantum systems, whereas the measuring instruments are con- 
sidered as classical systems. In order to describe both kinds of entities on 
the same level, the measuring instruments should be treated as quantum 
systems. However, in this case the problems mentioned above would also 
become relevant for the measuring instruments. 

The mathematical formulation of the "covariance principle" in quantum 
mechanics given below will not solve these problems. It is for the present 
only a formal analogy to the covariance principle of classical mechanics, but 
it leads to interesting results, which are intuitively clear and in the spirit of 
the general idea of object constitution. The interpretation of the quantum 
mechanical covariance principle is, however, not yet sufficiently clear and 
requires further elaboration. 

3.2. Quantum Covariance 

Similarly as in classical mechanics, also in quantum mechanics observ- 
ables will be characterized by their covariance with respect to the subgroups 
G of the Galilei group G~0. A Galilei-covariant observable can then be defined 
in two ways. First, an observable is a self-adjoint operator or a projection- 
valued (PV) measure ~ on a homogeneous space ~ [equipped with a Borel 
algebra B(O)] of some subgroup G of G~0. Observables of this kind allow 
for sharp measurements of some properties; they are, however, subject to the 
well-known complementarity restrictions. Second, the most general Galilei- 
covariant observable is given by an effect-valued (POV) measure �9 on a 
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homogeneous space ~ [with a Borel algebra B(12)] of a subgroup G C 
Gin. Observables of this kind allow for a simultaneous joint but unsharp 
measurement of complementary observables. 

The sharp properties of a quantum system S at some time value t which 
correspond to (sharp) yes-no propositions Pi are given by the closed linear 
manifolds (subspaces) of the Hilbert space H(S) of the system, or by the 
corresponding projection operators P e P(H) with eigenvalues 0 and 1. If 
the set {Pi} of propositions is extended by the quantum logical operations 
^, v, -~ and the implication relation -<, then one arrives at the complete, 
atomic, and orthomodular lattice LQ of "quantum logic." The operations ^, 
v, -, introduced here are defined as intersection (^) and span (v) of two 
subspaces and as the orthocomplement (-,), respectively. 

Let B = B(~) be again the lattice of Borel sets on the real line ~ ;  then 
a quantum mechanical observable qb can be defined by the projection-valued 
measure ~: B --~ LQ. A given Borel set A is then mapped into the proposition 
rip(A) E LQ. The triple (dp, B, LQ) is then again connected with the invariance 
group G10 in a twofold way. First, the transformation group acts actively on 
the system S, changing its properties P e L o. For this change one needs 
representations S(G) of subgroups G C Gl0 by automorphism of L 0. Second 
the transformation group acts on the measuring outcomes which correspond to 
the Borel sets of ~ .  This transformation can be achieved by the representations 
M(G) of G by automorphism of B. 

The principle of covariance implies the equivalence of active and passive 
transformations. The problems which are connected with the covariance 
principle in quantum mechanics have already been mentioned. If we adopt 
the principle also in the quantum case, it follows, using the same terminology 
as in the classical case, that 

dp{M(G)[B]} = L o = S(G)[rb{B}] (CQ) 

The difference between the covariance postulates (Cc) and (CQ) of classical 
physics and quantum physics, respectively, consists in the different proposi- 
tional systems Lc and Lo. 

As in classical mechanics, the general concept of an observable can be 
specified by the fundamental observables of position, momentum, and time 
(Jauch, 1968; Lahti, 1992; Piron, 1976). Let Ga C G be the subgroup of 
space translations depending on three parameters ak, and Ua = exp(-iap) 
the unitary representation of Ga in the Hilbert space. The position observable 
E: B(~]{ 3) --~ LQ. which corresponds to the operator qk = f x dE~(x) with 
E~(x) ~ P(H) is then transformed under Ga in a twofold way. The value Z 
E B(~ff~ 3) is transformed according to a representation M(Ga) as Z ~ Z + a. 
On the other hand, the projection operator E(Z) is transformed according to 
a representation S(G,) such that E(Z) ~ Ua E(Z)U2 I. The principle of covari- 
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ance requires that UaE(z)U21 = E(Z + a), which means that E fulfills the 
covariance postulate. 2 

Unsharp properties of a quantum system S are given by effects E the 
algebra of which is denoted here by E(H) (Busch et al., n.d.-a). The abstract 
algebra of unsharp properties is also called "unsharp orthoalgebra" (Dalla 
Chiara and Giuntini, n.d.-a, n.d.-b; Giuntini and Greuling, 1989). An unsharp 
observable can then be defined by the (POV) measure ~:  B(~t) ---> E(H), 
where B is again the algebra of Borel sets on ~t. A given Borel set A is 
mapped into the unsharp property ~(A) ~ E(H). The triple (~, B, E(H)) is 
then connected with the invariance group Gl0 in the twofold way mentioned 
above. First, a transformation subgroup G C G10 acts actively on the system 
S, changing its unsharp properties E E E(H). For this change one needs 
representations S(G) of subgroups G C Gl0 by automorphism of E(H). Second, 
the transformation group acts on the measuring outcomes which correspond to 
the Borel sets o f~ .  This transformation can be achieved by the representations 
M(G) of G by automorphism of B. Hence the principle of covariance reads 

�9 {M(G)[B]] = E(H) = S(G)[~{B}] (CQE) 

This postulate characterizes the Galilei-covariant effect-valued measures 
which can be attributed to a quantum system as its unsharp observables. 

3.3. Quantum Objects 

As in the classical case, also quantum objects will be introduced as 
carriers of properties. This can be done for sharp as well as for unsharp 
observables. If the concept of a sharp (PV) observable is clarified in the 
way formulated above, one can define a quantum object as a carrier of the 
fundamental properties which correspond to the observables qk (position), Pk 
(momentum), and t (time). Using the covariance postulate (CQ), we define 
a quantum object S O as an algebra LQ such that a unitary representation 
S(Gqo) of the passive Galilei group Gq0 is defined in the automorphism of 
LQ that admits the observables qk, P~, and t in the sense of the covariance 
postulate (CQ). This means that a quantum object is a carrier of the properties 
P e LQ, but not only in one contingent situation CM, which is given by the 
observerapparatus M and its space time coordinates, but also in all situations 
CM' which evolve from CM by Galilei transformations. Analogously to the 
classical object, the quantum object is a carrier of properties P ~ LQ which 
persists under the transformations of the Galilei group. 

However, in spite of the similarities in the method of constitution, there 
are striking differences between classical objects and quantum objects which 

2Some authors (Jauch, 1968; Lahti, 1992; Mackey, 1963; Piron, 1976; Scherer, 1994) call E(Z) 
a "system of imprimitivities." 
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come from the different lattices Lc and LQ, respectively. The propositional 
system Lc is a complete, atomic orthomodular and distributive lattice. Hence 
the object Sc possesses any property P E Lc either in the affirmative or in 
the negative sense, i.e., the object Sc is "completely determined" (Mittelstaedt, 
1987, pp. 61ff). In contrast to this well-known situation, a quantum object 
SQ possesses at a certain time value t simultaneously only a limited class of 
commensurable properties given by elements of a Boolean sublattice L} C 
LQ. Hence a quantum system is (at a certain time value t) only a carrier of 
a class of mutually commensurable properties (Mittelstaedt, 1987, pp. 128ff, 
1994; Busch et al., n.d.). 

On the basis of the general concept of a quantum object as carrier of 
properties of LQ one can again specify this concept by considering different 
classes. Elementary quantum systems are given by irreducible unitary repre- 
sentations S(G) of the Galilei group. For elementary objects there are no true 
representations of the group Gin, but only projective ones. These representa- 
tions are again characterized by one continuous parameter m which can be 
interpreted as the mass of the quantum object and which characterizes a 
certain class of objects. 

In a similar way one can also use the unsharp properties mentioned 
above for the definition of a quantum system S o. In this case one has to 
make use of effect-valued measures which fulfill the covariance postulate 
(CoE). A quantum object can then be defined as a carrier of these unsharp 
properties, the algebra of which is given by E(H). In contrast to the definition 
of objects by means of sharp (PV) properties, in case of unsharp (POV) 
properties an object can possess in principle an arbitrary set of effects E 
E(H) simultaneously. Hence a quantum system can alternatively be defined 
as carrier of all properties which are subject to the covariance postulate (CQE) 
and which are unsharp in the sense of POV-measures. 

3.4. Individual Quantum Systems 

Since quantum objects are carriers of those properties (observables) 
which fulfill the covariance postulate, for the characterization of individual 
objects one can use only properties of this kind. Furthermore, due to the 
general incommensurability of quantum properties, only a Boolean sublattice 
of the propositional lattice LQ c a n  simultaneously be applied to the system. 
This means that either the position observables qi or the momentum observ- 
ables pi can be attributed to the system at the same time t, but not both 
together. Since impenetrability is only known to hold in position space, we 
try to determine objects by their position observables qk which fulfills the 
covariance conditions with respect to the Euclidean group. Even if uniqueness 
is given by a contingent impenetrability law at a time t, it must be further 
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guaranteed that the system can be reidentified at a later time t'. This is only 
possible if the first measurement at time t was a repeatable measurement. 

However, according to well-known results (Ozawa, 1984), repeatability 
implies the discreteness of the measured observable. Since the position 
observable Ek(x) is continuous, it cannot be measured repeatably and hence 
it is not possible to reidentify an object by measurements of its position. 
There are of course well-known procedures to discretize a continuous observ- 
able. Any partition (Xi) of the real line fit induces a discrete version i ~ U(xi) 
of the position observable. However, according to the covariance principle 
mentioned above, this and other discretization procedures of the position 
observable E~(x) are not tenable since they would destroy the covariance 
with respect to the Euclidean group. It is obvious that the Euclidean covariance 
must be fulfilled if the position observable Ek(x) shall pertain to the system 
as one of its properties. In this situation one could try to replace the PV- 
measure Ek(x) by some convenient POV-measure E~(x) which corresponds 
to an unsharp observable. However, it can be shown again (Busch et al., 
1991) that this observable can be measured in a repeatable way only if it 
is discrete. 

A possible way to preserve Euclidean covariance and to reidentify the 
system at least approximately is to relax the repeatability condition. This can 
be done in several ways. Here we refer to the almost repeatable measurements, 
which are also (Busch et al., 1991) called g-repeatable: For any g > 0 and 
any set X we write X~ := {x ~ ~ :  Ix - x ' l  --- g for all x' E X}. A position 
measurement is said to be g-repeatable if the probability pe(Ws(q~, X), X~) 
for obtaining a result of the repeated measurement in X~ if the result of the 
previous measurement was in the set X, equals 1. [Ws(% X) is the final state 
of the first measurement performed on system S with preparation q~ and a 
result in X.] 

If the result of the first measurement is in X, one can alternatively relax 
the repeatability condition by the requirement that the probability pe(Ws(q~, 
X), X) for obtaining a result of the repeated measurement in the same set X, 
i.e., to prepare the system with a value in X, fulfills the relation pe(Ws(% X), 
X) ---> 1 - e for some e with 0 --- �9 - 1. Measurements of this kind are 
called �9 It is obvious that one can further relax the concept of 
repeatability by combining g-repeatability and e-preparatory to (�9 - g)- 
repeatable measurements, for which it holds that pE(Ws(q~, X), X~) >- 1 - �9 

The g-repeatable measurements do not provide a strict reidentifiability, 
but only an approximate one. Moreover, only unsharp position observables 
in the sense of POV-measures can be used for the reidentification. The reasons 
are that joint measurements of position and momentum are required for 
making use of a causality law and that the position observable E~(x) at the 
initial time t must be compatible with the position observable E~,(x) at time 



Objects in Classical and Quantum Mechanics 1625 

t' > t. These two necessary conditions for the reidentification can only be 
achieved by unsharp position (and momentum) observables, but not by the 
corresponding PV-measures. 

For phase space observables which are needed here, there are neither 
a-repeatable nor t-preparatory measurements (Busch et al., n.d.). However, 
for a given ~ one can always choose a ~ such that this measurement is 
(~ - ~)-repeatable. For this reason the reidentification must be performed by 
(e - 8)-repeatable measurements of the unsharp joint position and momentum 
observables. We call this unsharp way to reidentify an individual system 
(e - g)-reidentification. It is obvious that by means of this method one cannot 
denote individuals in the strict sense. 

Another, perhaps more promising way to characterize individual systems 
by means of unsharp position and momentum observables is by "weakly 
disturbing" measurements Scherer (1994). Let S be an object system with a 
convenient preparation % A unitary joint measurement of  an unsharp position 
and momentum observable can then be described by the operator U(k, Ix, 
qs, Ps), where qs, Ps are the position and momentum operators of the object 
S, respectively, k and ix are parameters which determine the strength of the 
measuring interaction. 

Assume that for the special preparation q~ a measurement of this kind 
leads to a final state Ws(~p, Aq • Ap) with a position value in Aq E B(~q) 
and a momentum value in Ap ~ B(~tp). The probability p(Ws(q~, Aq • Ap), 
Aq • Ap) for obtaining by a repeated measurement a result in Aq • Ap, if 
the result of the previous measurement was in Aq • Ap, depends on h and 
Ix. However, it turns out that h and p~ can be chosen such that p(Ws, Aq • 
Ap) = 1 - ~, where ~ --> 0 is arbitrary small. These state-preserving measure- 
ments are "weakly disturbing" measurements. Clearly, measurements of this 
kind depend on the initial preparation. On the other hand, these "weakly 
disturbing" measurements can be used for tracing an object system along its 
trajectory in space-time. 
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